The kinetic characterisation of multisubstrate systems is not a trivial task. Common approaches simplify the experimental procedures by sequentially fixing saturating concentrations of different substrates/products, thereby attempting to isolate the influence of the varying molecule. Even after such tedious work, only apparent Km values can be determined, preventing serious comparison among differential substrate behaviours.
View Article and Find Full Text PDFNormalisation of kinetic data is a useful tool in the study of complex enzyme systems. In the present paper, we have applied the premises of the normalised plot to the description of uni-uni enzyme inhibition. Guidelines to the design of the experiments and to data managing using the freeware program SIMFIT (http:\\www.
View Article and Find Full Text PDFN-Acetyl-D-mannosamine (ManNAc) and N-acetyl-D-glucosamine (GlcNAc) are the essential precursors of N-acetylneuraminic acid (NeuAc), the specific monomer of polysialic acid (PA), a bacterial pathogenic determinant. Escherichia coli K1 uses both amino sugars as carbon sources and uptake takes place through the mannose phosphotransferase system transporter, a phosphoenolpyruvate-dependent phosphotransferase system that shows a broad range of specificity. Glucose, mannose, fructose, and glucosamine strongly inhibited the transport of these amino-acetylated sugars and GlcNAc and ManNAc strongly affected ManNAc and GlcNAc uptake, respectively.
View Article and Find Full Text PDFThe N-acetylneuraminic acid (NeuAc) transport system of Pasteurella (Mannheimia) haemolytica A2 was studied when this bacterium was grown in both complex and chemically defined media. Kinetic measurements were carried out at 37 degrees C in 50 mM Tris-HCl buffer, pH 8.0, containing 50 microg/ml bovine serum albumin.
View Article and Find Full Text PDF