Publications by authors named "A Redonnet"

Glucocorticoid receptor (GR) function is modulated by phosphorylation. As retinoic acid (RA) can activate some cytoplasmic kinases able to phosphorylate GR, we investigated whether RA could modulate GR phosphorylation in neuronal cells in a context of long-term glucocorticoid exposure. A 4-day treatment of dexamethasone (Dex) plus RA, showed that RA potentiated the (Dex)-induced phosphorylation on GR Serine 220 (GR) in the nucleus of a hippocampal HT22 cell line.

View Article and Find Full Text PDF

A chronic excess of glucocorticoids elicits deleterious effects in the hippocampus. Conversely, retinoic acid plays a major role in aging brain plasticity. As synaptic plasticity depends on mechanisms related to cell morphology, we investigated the involvement of retinoic acid and glucocorticoids in the remodelling of the HT22 neurons actin cytoskeleton.

View Article and Find Full Text PDF

Vitamin A metabolite retinoic acid (RA) plays a major role in the aging adult brain plasticity. Conversely, chronic excess of glucocorticoids (GC) elicits some deleterious effects in the hippocampus. We questioned here the involvement of RA and GC in the expression of target proteins in hippocampal neurons.

View Article and Find Full Text PDF

Thyroid dysfunction and dementia are conditions that become more prevalent with advancing age. Localised hypothyroidism of the central nervous system has been sugested in some patients with Alzheimer's disease. We investigated the consequence of adult-onset hypothyroidism on beta-amyloid precursor protein (APP) degrading pathways in rats treated with propylthiouracyl over a period of 5 weeks.

View Article and Find Full Text PDF

In order to evaluate the expression of nuclear receptors at the peripheral level in obese subjects, messenger RNA (mRNA) levels of different isoforms of retinoic acid receptor (RAR), triiodothyronine (TR), and peroxisome proliferator-activated receptor (PPAR) were determined and compared in peripheral mononuclear blood cells (PBMC) and subcutaneous white adipose tissue (SWAT). Twelve lean subjects and 68 obese subjects divided into weight gain (WG), weight-stable (WS), and weight loss (WL) groups were studied. Nuclear receptor mRNA levels were assessed in PBMC and SWAT using a quantitative real-time reverse transcription polymerase chain reaction method.

View Article and Find Full Text PDF