SARS-CoV-2 pandemic is causing high morbidity and mortality burden worldwide with unprecedented strain on health care systems. To investigate the time course of the antibody response in relation to the outcome we performed a study in hospitalized COVID-19 patients. As comparison we also investigated the time course of the antibody response in SARS-CoV-2 asymptomatic subjects.
View Article and Find Full Text PDFTetrahydrobiopterin (BH4) is an essential cofactor for the aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide synthases (NOS). Inborn errors of BH4 metabolism lead to severe insufficiency of brain monoamine neurotransmitters while augmentation of BH4 by supplementation or stimulation of its biosynthesis is thought to ameliorate endothelial NOS (eNOS) dysfunction, to protect from (cardio-) vascular disease and/or prevent obesity and development of the metabolic syndrome. We have previously reported that homozygous knock-out mice for the 6-pyruvolytetrahydropterin synthase (PTPS; Pts-ko/ko) mice with no BH4 biosynthesis die after birth.
View Article and Find Full Text PDFPhenylketonuria (PKU) is caused by hepatic phenylalanine hydroxylase (PAH) deficiency and is associated with systemic accumulation of phenylalanine (Phe). Previously we demonstrated correction of murine PKU after intravenous injection of a recombinant type 2 adeno-associated viral vector pseudotyped with type 8 capsid (rAAV2/8), which successfully directed hepatic transduction and Pah gene expression. Here, we report that liver PAH activity and phenylalanine clearance were also restored in PAH-deficient mice after simple intramuscular injection of either AAV2 pseudotype 1 (rAAV2/1) or rAAV2/8 vectors.
View Article and Find Full Text PDFPhenylketonuria (PKU) caused by phenylalanine hydroxylase (PAH) deficiency leads to toxic accumulation of phenylalanine (Phe). PAH is predominantly expressed in liver and its activity requires a supply of tetrahydrobiopterin (BH(4)) cofactor, but we propose that expression of a complete Phe hydroxylating system (PAH plus BH(4) synthetic enzymes) in skeletal muscle will lead to therapeutic reduction of blood Phe levels in Pah(enu2) mice, a model of human PKU. In order to test this hypothesis, we first developed transgenic Pah(enu2) mice that lack liver PAH activity but coexpress, in their skeletal muscle, PAH and guanosine triphosphate cyclohydrolase I (GTPCH).
View Article and Find Full Text PDF