T helper (Th) 17 and regulatory T (Treg) cells are highly plastic CD4 Th cell subsets, being able not only to actively adapt to their microenvironment, but also to interconvert, acquiring mixed identity markers. These phenotypic changes are underpinned by transcriptional control mechanisms, chromatin reorganization events and epigenetic modifications, that can be hereditable and stable over time. The Ikaros family of transcription factors have a predominant role in T cell subset specification through mechanisms of transcriptional program regulation that enable phenotypical diversification.
View Article and Find Full Text PDFExopolysaccharide (EPS) is a bacterial extracellular carbohydrate moiety which has been associated with immunomodulatory activity and host protective effects of several gut commensal bacteria. are early colonizers of the human gastrointestinal tract (GIT) but the role of EPS in mediating their effects on the host has not been investigated for many strains. Here, we characterized EPS production by a panel of human isolates and investigated the effect of EPS status on host immune responses using human and murine cell culture-based assay systems.
View Article and Find Full Text PDFLiver X receptors are members of the nuclear receptor superfamily of transcription factors. The LXR genes (NR1H2 and NR1H3) encode for two different proteins referred to as LXRα and LXRβ. Each LXR presents diverse tissue distribution but similar target DNA-binding elements and ligands.
View Article and Find Full Text PDFMacrophages are professional phagocytic cells that play key roles in innate and adaptive immunity, metabolism, and tissue homeostasis. Lipid metabolism is tightly controlled at the transcriptional level, and one of the key players of this regulation in macrophages and other cell types is the LXR subfamily of nuclear receptors (LXRα and LXRβ). The use of LXR double knockout (LXR-DKO) macrophages in vitro has yielded extensive benefits in metabolism research, but this technique is hindered by primary macrophage cell expansion capability, which diminishes along terminal cell differentiation process.
View Article and Find Full Text PDFThe liver X receptors α and β (LXRα and LXRβ) are oxysterol-activated transcription factors that coordinately regulate gene expression that is important for cholesterol and fatty acid metabolism. In addition to their roles in lipid metabolism, LXRs participate in the transcriptional regulation of macrophage activation and are considered potent regulators of inflammation. LXRs are highly similar, and despite notable exceptions, most of their reported functions are substantially overlapping.
View Article and Find Full Text PDF