Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates.
View Article and Find Full Text PDFIn Bayesian phylogenetic and phylodynamic studies it is common to summarise the posterior distribution of trees with a time-calibrated consensus phylogeny. While the maximum clade credibility (MCC) tree is often used for this purpose, we here show that a novel consensus tree method - the highest independent posterior subtree reconstruction, or HIPSTR - contains consistently higher supported clades over MCC. We also provide faster computational routines for estimating both consensus trees in an updated version of TreeAnnotator X, an open-source software program that summarizes the information from a sample of trees and returns many helpful statistics such as individual clade credibilities contained in the consensus tree.
View Article and Find Full Text PDFMotivation: Bayesian phylogeographic analyses are pivotal in reconstructing the spatio-temporal dispersal histories of pathogens. However, interpreting the complex outcomes of phylogeographic reconstructions requires sophisticated visualization tools.
Results: To meet this challenge, we developed spread.
Background: Genomic epidemiology has helped reconstruct the global and regional movement of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is still a lack of understanding of SARS-CoV-2 spread in some of the world's least developed countries (LDCs).
Methods: To begin to address this disparity, we studied the transmission dynamics of the virus in Bangladesh during the country's first COVID-19 wave by analysing case reports and whole-genome sequences from all eight divisions of the country.
Modern phylogenetics research is often performed within a Bayesian framework, using sampling algorithms such as Markov chain Monte Carlo (MCMC) to approximate the posterior distribution. These algorithms require careful evaluation of the quality of the generated samples. Within the field of phylogenetics, one frequently adopted diagnostic approach is to evaluate the and to investigate trace graphs of the sampled parameters.
View Article and Find Full Text PDF