The main objective of this study was to determine the variation in the properties of cadmium telluride (CdTe) thin films deposited on a p-type Si substrate by the radio frequency magnetron sputtering technique at four different working powers (70 W, 80 W, 90 W, and 100 W). The substrate temperature, working pressure, and deposition time during the deposition process were kept constant at 220 °C, 0.46 Pa, and 30 min, respectively.
View Article and Find Full Text PDFZinc selenide (ZnSe) thin films were deposited by RF magnetron sputtering in specific conditions, onto optical glass substrates, at different RF plasma power. The prepared ZnSe layers were afterwards subjected to a series of structural, morphological, optical and electrical characterizations. The obtained results pointed out the optimal sputtering conditions to obtain ZnSe films of excellent quality, especially in terms of better optical properties, lower superficial roughness, reduced micro-strain and a band gap value closer to the one reported for the ZnSe bulk semiconducting material.
View Article and Find Full Text PDFConsistent with wave-optics simulations of metasurfaces, aberrations of metalenses should also be described in terms of wave optics and not ray tracing. In this respect, we have shown, through extensive numerical simulations, that intensity-based moments and the associated parameters defined in terms of them (average position, spatial extent, skewness and kurtosis) adequately capture changes in beam shapes induced by aberrations of a metalens with a hyperbolic phase profile. We have studied axial illumination, in which phase-discretization induced aberrations exist, as well as non-axial illumination, when coma could also appear.
View Article and Find Full Text PDFUnlabelled: A new a biocompatible Ti42Zr40Ta3Si15 (atomic %) porous bulk glassy alloy was produced by combination of rapid solidification and powder metallurgy techniques. Amorphous alloy ribbons were fabricated by melt spinning, i.e.
View Article and Find Full Text PDFFragment partitions of fragmenting hot nuclei produced in central and semiperipheral collisions have been compared in the excitation energy region 4-10 MeV per nucleon where radial collective expansion takes place. It is shown that, for a given total excitation energy per nucleon, the amount of radial collective energy fixes the mean fragment multiplicity. It is also shown that, at a given total excitation energy per nucleon, the different properties of fragment partitions are completely determined by the reduced fragment multiplicity (i.
View Article and Find Full Text PDF