Electrochemical techniques conventionally lack spatial resolution and average local information over an entire electrode. While advancements in spatial resolution have been made through scanning probe methods, monitoring dynamics over large areas is still challenging, and it would be beneficial to be able to decouple the probe from the electrode itself. In this work, we leverage single molecule microscopy to spatiotemporally monitor analyte surface concentrations over a wide area using unmodified hexagonal boron nitride (hBN) in organic solvents.
View Article and Find Full Text PDFNeuromorphic systems are typically based on nanoscale electronic devices, but nature relies on ions for energy-efficient information processing. Nanofluidic memristive devices could thus potentially be used to construct electrolytic computers that mimic the brain down to its basic principles of operation. Here we report a nanofluidic device that is designed for circuit-scale in-memory processing.
View Article and Find Full Text PDFBiomolecular condensates play important roles in a wide array of fundamental biological processes, such as cellular compartmentalization, cellular regulation, and other biochemical reactions. Since their discovery and first observations, an extensive and expansive library of tools has been developed to investigate various aspects and properties, encompassing structural and compositional information, material properties, and their evolution throughout the life cycle from formation to eventual dissolution. This Review presents an overview of the expanded set of tools and methods that researchers use to probe the properties of biomolecular condensates across diverse scales of length, concentration, stiffness, and time.
View Article and Find Full Text PDFTwo-dimensional (2D) materials offer potential as substrates for biosensing devices, as their properties can be engineered to tune interactions between the surface and biomolecules. Yet, not many methods can measure these interactions in a liquid environment without introducing labeling agents such as fluorophores. In this work, we harness interferometric scattering (iSCAT) microscopy, a label-free imaging technique, to investigate the interactions of single molecules of long dsDNA with 2D materials.
View Article and Find Full Text PDF