We provide an overview of a pressure cell designed to apply uniaxial pressure to single crystals for the study, by neutron scattering techniques, of strongly correlated magnetic systems and, in particular, quantum magnets. A detailed overview of the pressure cell components, their requirements, and links to the scientific and technical specifications are presented. The pressure cell is able to accommodate a 200 mm3 single crystal that can be pressurized up to 2 GPa at cryogenic temperatures.
View Article and Find Full Text PDFSpiral spin liquids are an exotic class of correlated paramagnets with an enigmatic magnetic ground state composed of a degenerate manifold of fluctuating spin spirals. Experimental realizations of the spiral spin liquid are scarce, mainly due to the prominence of structural distortions in candidate materials that can trigger order-by-disorder transitions to more conventionally ordered magnetic ground states. Expanding the pool of candidate materials that may host a spiral spin liquid is therefore crucial to realizing this novel magnetic ground state and understanding its robustness against perturbations that arise in real materials.
View Article and Find Full Text PDFA new class of electrolytes have been reported, hybridizing aqueous with non-aqueous solvents, which combines non-flammability and non-toxicity characteristics of aqueous electrolytes with the superior electrochemical stability of non-aqueous systems. Here, we report measurements of the structure of an electrolyte composed of an equal-mass mixture of 21 m LiTFSI-water and 9 m LiTFSI-dimethyl carbonate using high-energy x-ray diffraction and polarized neutron diffraction with isotope substitution. Neutron structure factors from partially and fully deuterated samples exhibit peaks at low scattering vector Q that we ascribe to long-range correlations involving both solvent molecules and TFSI anions.
View Article and Find Full Text PDFCo-Zn-Mn chiral cubic magnets display versatile magnetic skyrmion phases, including equilibrium phases stable far above and far below room temperature, and the facile creation of robust far-from-equilibrium skyrmion states. In this system, compositional disorder and magnetic frustration are key ingredients that have profound effects on the chiral magnetism. Reported here are studies of the magnetism in CoZnMn by magnetometry, small-angle neutron scattering (SANS), magnetic diffuse neutron scattering and Lorentz transmission electron microscopy (LTEM).
View Article and Find Full Text PDFIn the dense metal-organic framework Na[Mn(HCOO)_{3}], Mn^{2+} ions (S=5/2) occupy the nodes of a "trillium" net. We show that the system is strongly magnetically frustrated: the Néel transition is suppressed well below the characteristic magnetic interaction strength; short-range magnetic order persists far above the Néel temperature; and the magnetic susceptibility exhibits a pseudo-plateau at 1/3-saturation magnetization. A simple model of nearest-neighbor Heisenberg antiferromagnetic and dipolar interactions accounts quantitatively for all observations, including an unusual 2-k magnetic ground state.
View Article and Find Full Text PDF