Publications by authors named "A R Upadhya"

Embryo quality assessment by optical imaging is increasing in popularity. Among available optical techniques, light sheet microscopy has emerged as a superior alternative to confocal microscopy due to its geometry, enabling faster image acquisition with reduced photodamage to the sample. However, previous assessments of photodamage induced by imaging may have failed to measure more subtle impacts.

View Article and Find Full Text PDF

Embryo quality is an important determinant of successful implantation and a resultant live birth. Current clinical approaches for evaluating embryo quality rely on subjective morphology assessments or an invasive biopsy for genetic testing. However, both approaches can be inherently inaccurate and crucially, fail to improve the live birth rate following the transfer of in vitro produced embryos.

View Article and Find Full Text PDF

Introduction: The absence of spatially resolved air pollution measurements remains a major gap in health studies of air pollution, especially in disadvantaged communities in the United States and lower-income countries. Many urban air pollutants vary over short spatial scales, owing to unevenly distributed emissions sources, rapid dilution away from sources, and physicochemical transformations. Primary air pollutants from traffic have especially sharp spatial gradients, which lead to disparate effects on human health for populations who live near air pollution sources, with important consequences for environmental justice.

View Article and Find Full Text PDF

Background: Relatively clean cooking fuels such as liquefied petroleum gas (LPG) emit less fine particulate matter (PM) and carbon monoxide (CO) than polluting fuels (eg, wood, charcoal). Yet, some clean cooking interventions have not achieved substantial exposure reductions. This study evaluates determinants of between-community variability in exposures to household air pollution (HAP) across sub-Saharan Africa.

View Article and Find Full Text PDF

Mobile monitoring can supplement regulatory measurements, particularly in low-income countries where stationary monitoring is sparse. Here, we report results from a ~ year-long mobile monitoring campaign of on-road concentrations of black carbon (BC), ultrafine particles (UFP), and carbon dioxide (CO) in Bengaluru, India. The study route included 150 unique kms (average: ~22 repeat measurements per monitored road segment).

View Article and Find Full Text PDF