Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges.
View Article and Find Full Text PDFMXenes are an emerging class of nanomaterials with significant potential for applications in nanomedicine. Amongst MXene technologies, titanium carbide (TiCT) nanomaterials are the most mature and have received significant attention to tackle longstanding clinical challenges due to its tailored physical and material properties. Cardiac allograft vasculopathy is an aggressive form of atherosclerosis and a major cause of mortality among patients with heart transplants.
View Article and Find Full Text PDFMXene QDs (MQDs) have been effectively used in several fields of biomedical research. Considering the role of hyperactivation of immune system in infectious diseases, especially in COVID-19, MQDs stand as a potential candidate as a nanotherapeutic against viral infections. However, the efficacy of MQDs against SARS-CoV-2 infection has not been tested yet.
View Article and Find Full Text PDFIntegration of 2D structures into other low-dimensional materials results in the development of distinct van der Waals heterostructures (vdWHSs) with enhanced properties. However, obtaining 2D-1D-0D vdWHSs of technologically useful next generation materials, transition-metal carbide MXene and monoelemental Xene nanosheets in a single superlattice heterostructure is still challenging. Here, the fabrication of a new multidimensional superlattice heterostructure "GerMXene" from exfoliated MXT MXene and hydrogenated germanane (GeH) crystals, is reported.
View Article and Find Full Text PDFThe application of nontoxic 2D transition-metal carbides (MXenes) has recently gained ground in bioelectronics. In group-4 transition metals, tantalum possesses enhanced biological and physical properties compared to other MXene counterparts. However, the application of tantalum carbide for bioelectrodes has not yet been explored.
View Article and Find Full Text PDF