Publications by authors named "A R Mount"

Our previous work has established that micron-resolution photolithography can be employed to make microsquare nanoband edge electrode (MNEE) arrays. The MNEE configuration enables systematic control of the parameters (electrode number, cavity array spacing, and nanoelectrode dimensions and placement) that control geometry, conferring a consistent high-fidelity electrode response across the array (, high signal, high signal-to-noise, low limits of detection and fast, steady-state, reproducible and quantitative response) and allowing the tuning of individual and combined electrode interactions. Building on this, in this paper we now produce and characterise a micropore nanoband electrode (MNE) array designed for flow-through detection, where an MNEE edge electrode configuration is used to form a nanotube electrode embedded in the wall of each micropore, formed as an array of pores of controlled size and placement through an insulating membrane of sub-micrometer thickness.

View Article and Find Full Text PDF

Background: There is compelling evidence that AXRs have limited clinical value in the acute setting. Despite this, they are frequently used in many EDs. This quality improvement project (QIP) aimed to reduce unnecessary AXR use in a single-centre ED.

View Article and Find Full Text PDF

Implantable electrochemical sensors that enable the real-time detection of significant biomarkers offer huge potential for the enhancement and personalisation of therapies; however, biofouling is a key challenge encountered by any implantable system. This is particularly an issue immediately after implantation, when the foreign body response and associated biofouling processes are at their most active in passivating a foreign object. Here, we present the development of a sensor protection and activation strategy against biofouling, based on coatings consisting of a pH-triggered, dissolvable polymer, that covered a functionalised electrode surface.

View Article and Find Full Text PDF

The fabrication of protected peptide-based hydrogels on electrode surfaces can be achieved by employing the electrochemical oxidation of hydroquinone to benzoquinone, liberating protons at the electrode-solution interface. The localised reduction in pH below the dipeptide gelator molecules p initiates the neutralisation, self-assembly and formation of self-supporting hydrogels exclusively at the electrode surface. Previous examples have been on a nanometre to millimetre scale, using deposition times ranging from seconds to minutes.

View Article and Find Full Text PDF