Purpose: To evaluate the improvement in electrical synchrony and left ventricle (LV) hemodynamics provided by combining the dynamic atrioventricular delay (AVD) of SyncAV CRT and the multiple LV pacing sites of MultiPoint pacing (MPP).
Methods: Patients with LBBB and QRS duration (QRSd) > 140 ms implanted with a CRT-D or CRT-P device and quadripolar LV lead were enrolled in this prospective study. During a post-implant follow-up visit, QRSd was measured from 12-lead surface electrograms by experts blinded to pacing configurations.
Background: There are still many pendent issues about the effective evaluation of cardiac resynchronization therapy impact on functional mitral regurgitation. In order to reduce the intrinsic difficulties of quantification of functional mitral regurgitation itself, an automatic quantification of real-time three-dimensional full-volume color Doppler transthoracic echocardiography was proposed as a new, rapid, and accurate method for the assessment of functional mitral regurgitation severity. Recent studies suggested that images of left ventricle flow by echo-particle imaging velocimetry could be a useful marker of synchrony.
View Article and Find Full Text PDFJ Med Case Rep
July 2016
Background: The availability of pacing configurations offered by quadripolar left ventricular leads could improve patients' response to cardiac resynchronization therapy; however, the selection of an optimal setting remains a challenge. Echo-particle imaging velocimetry has shown that regional anomalies of synchrony/synergy of the left ventricle are related to the alteration, reduction, or suppression of the physiological intracavitary pressure gradients. These observations are also supported by several numerical models of the left ventricle that have shown the close relationship between wall motion abnormalities, change of intraventricular flow dynamics, and abnormal distribution of forces operating on the ventricular endocardium.
View Article and Find Full Text PDFHemodynamic forces represent an epigenetic factor during heart development and are supposed to influence the pathology of the grown heart. Cardiac blood motion is characterized by a vortical dynamics, and it is common belief that the cardiac vortex has a role in disease progressions or regression. Here we provide a preliminary demonstration about the relevance of maladaptive intra-cardiac vortex dynamics in the geometrical adaptation of the dysfunctional heart.
View Article and Find Full Text PDF