Publications by authors named "A R Khosravi"

Carbon-based nanozymes (CNs) have emerged as a significant innovation in targeted cancer therapy, demonstrating great potential for advancing cancer diagnosis and treatment. With exceptional catalytic properties, remarkable biocompatibility, and the ability to precisely target cancer cells, CNs provide a promising avenue for the development of novel oncological therapies. By functionalizing their surfaces with targeting ligands, such as antibodies or peptides, CNs can specifically recognize and bind to cancer cells.

View Article and Find Full Text PDF

Introduction: Cutaneous Leishmaniasis (CL) is a zoonosis infection which is endemic in more than 100 countries in Asia, Africa, Europe and America. It was estimated that nearly 20 thousand of new cases are reported in Iran annually. This study aimed to investigate the impact of floods on the incidence of leishmaniasis in Golestan province (northeast of Iran) over nine years, from 2015 to 2023.

View Article and Find Full Text PDF

Evidence has argued about the association between dairy intake and premature coronary artery disease (PCAD) development aimed to be discussed in this study. This case-control study was conducted on 813 individuals with PCAD and 471 healthy controls. The dairy intake of participants was assessed by a validated semi-quantitative food frequency questionnaire.

View Article and Find Full Text PDF

Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.

View Article and Find Full Text PDF

The increasing prevalence of chronic diseases and their associated morbidities demands a deeper understanding of underlying mechanism and causative factors, with the hope of developing novel therapeutic strategies. Autophagy, a conserved biological process, involves the degradation of damaged organelles or protein aggregates to maintain cellular homeostasis. Disruption of this crucial process leads to increased genomic instability, accumulation of reactive oxygen species (ROS), decreased mitochondrial functions, and suppression of ubiquitination, leading to overall decline in quality of intracellular components.

View Article and Find Full Text PDF