Publications by authors named "A R Khanchi"

The adsorption-desorption behavior of fluorine, chlorine, and bromine molecules onto a crystalline porous organic cage, namely CC3-R was calculated at different temperatures using molecular dynamics (MD) and grand-canonical Monte Carlo (GCMC) simulations. Self-diffusion coefficients, radial distribution functions (RDF), and adsorption isotherms were calculated for this purpose. The results show that CC3-R has varied capacities to capture these halogens at ambient and high temperatures, so that the thermal release of fluorine is completed with increasing temperature up to around 70°C and chlorine molecules remain at the CC3-R surface up to 100°C and all bromine molecules are removed from the CC3-R surface at 200°C.

View Article and Find Full Text PDF

Knowledge of biological reactivity and underlying toxicity mechanisms of airborne particulate matter (PM) is central to the characterization of the risk associated with these pollutants. An integrated screening platform consisting of protein profiling of cellular responses and cytotoxic analysis was developed in this study for the estimation of PM potencies. Mouse macrophage (J774A.

View Article and Find Full Text PDF

In this study, we used Silica/polyvinyl imidazole core-shell nanoparticles impregnated with sodium dihydrogen phosphate (SiO/PVI/HPO NPs) for adsorption of samarium and dysprosium ions from aqueous solutions. The effects of the pH, adsorbent dose, contact time, and initial concentration of the adsorbate on the Core-shell nanoparticles adsorption capacity have been studied. The pH value for maximum removal of Sm (III) and Dy (III) on the core-shell nanoparticles surface were found to be 4.

View Article and Find Full Text PDF

Background: On the basis of results of our previous investigations on 90Y-DTPA-rituximab and in order to fulfil national demands to radioimmunoconjugates for radioscintigraphy and radioimmunotherapy of Non-Hodgkin's Lymphoma (NHL), preparation and radiolabeling of a lyophilized formulation (kit) of DOTA-rituximab with 111In and 90Y was investigated.

Methods: 111In and 90Y with high radiochemical and radionuclide purity were prepared by 112Cd (p,2n)111In nuclear reaction and a locally developed 90Sr/90Y generator, respectively. DOTA-rituximab immunoconjugates were prepared by the reaction of solutions of p-SCN-Bz-DOTA and rituximab in carbonate buffer (pH = 9.

View Article and Find Full Text PDF

The aim of this study was to develop a scenario optimization model to address weather uncertainty in the Biomass Supply Chain (BSC). The modeling objective was to minimize the cost of biomass supply to biorefineries over a one-year planning period using monthly time intervals under different weather scenarios. The model is capable of making strategic, tactical and operational decisions related to BSC system.

View Article and Find Full Text PDF