Publications by authors named "A R Champneys"

Objective: To model the referral, diagnostic and treatment pathway for cardiovascular disease (CVD) in the English National Health Service (NHS) to provide commissioners and managers with a methodology to optimise patient flow and reduce waiting lists.

Study Design: A systems dynamics approach modelling the CVD healthcare system in England. The model is designed to capture current and predict future states of waiting lists.

View Article and Find Full Text PDF

Analysis of ex vivo Per2 bioluminescent rhythm previously recorded in the mouse dorsal vagal complex reveals a characteristic phase relationship between three distinct circadian oscillators. These signals represent core clock gene expression in the area postrema (AP), the nucleus of the solitary tract (NTS) and the ependymal cells surrounding the 4th ventricle (4Vep). Initially, the data suggests a consistent phasing in which the AP peaks first, followed shortly by the NTS, with the 4Vep peaking 8-9 h later.

View Article and Find Full Text PDF

Necessary and sufficient conditions are provided for a diffusion-driven instability of a stable equilibrium of a reaction-diffusion system with n components and diagonal diffusion matrix. These can be either Turing or wave instabilities. Known necessary and sufficient conditions are reproduced for there to exist diffusion rates that cause a Turing bifurcation of a stable homogeneous state in the absence of diffusion.

View Article and Find Full Text PDF

The process of developing an end-to-end model of a magneto-immunoassay is described, simulating the agglutination effect due to the specific binding of bacteria to paramagnetic particles. After establishing the properties of the dose-specific agglutination through direct imaging, a microfluidic assay was used to demonstrate changes in the magnetophoretic transport dynamics of agglutinated clusters via transient inductive magentometer measurements. End-to-end mathematical modelling is used to establish the physical processes underlying the assay.

View Article and Find Full Text PDF