Publications by authors named "A R Bartual"

Ocean warming and acidification negatively affect organisms and biogeochemical cycles. To date, emphasis has been placed on the study of the impact on the structures of calcifying species; however, there is limited knowledge about the influence of the increase of these two variables on the solid structures of non-calcifying species as jellyfish. Here, we study the effects that the increase of temperature and acidity would cause on the statoliths of newly released ephyrae of the Mediterranean jellyfish Rhizostoma pulmo.

View Article and Find Full Text PDF

Microbial associations and interactions drive and regulate nutrient fluxes in the ocean. However, physical contact between cells of marine cyanobacteria has not been studied thus far. Here, we show a mechanism of direct interaction between the marine cyanobacteria and , the intercellular membrane nanotubes.

View Article and Find Full Text PDF

Diatoms are responsible for the fixation of ca. 20% of the global CO2 and live associated with bacteria that utilize the organic substances produced by them. Current research trends in marine microbial ecology show which diatom and bacteria interact mediated through the production and exchange of infochemicals.

View Article and Find Full Text PDF

Polyunsaturated aldehydes (PUAs) are bioactive molecules suggested as chemical defenses and infochemicals. In marine coastal habitats, diatoms reach high PUA production levels during bloom episodes. Two fractions of PUA can usually be analyzed: pPUA obtained via artificial breakage of collected phytoplankton cells and dissolved PUA already released to the environment (dPUA).

View Article and Find Full Text PDF

The polyunsaturated aldehydes (PUAs) are bioactive metabolites commonly released by phytoplankton species. Based primarily on laboratory experiments, PUAs have been implicated in deleterious effects on herbivores and competing phytoplankton species or in the regulation of the rates of bacterial organic matter remineralization; however, the role of the PUAs at an ecosystem level is still under discussion. Using data of PUA production in natural phytoplankton assemblages over a wide range of conditions, we analyzed macroecological patterns aiming for a comprehensive environmental contextualization that will further our understanding of the control and ecologic role played by these compounds.

View Article and Find Full Text PDF