(1) Background: Volumetric modulated arc therapy (VMAT) can deliver more accurate dose distribution and reduce radiotherapy-induced toxicities for postoperative cervical and endometrial cancer. This study aims to retrospectively analyze the relationship between dosimetric parameters of organs at risk (OARs) and acute toxicities and provide suggestions for the dose constraints. (2) Methods: A total of 164 postoperative cervical and endometrial cancer patients were retrospectively analyzed, and the endpoints were grade ≥ 2 acute urinary toxicity (AUT) and acute lower gastrointestinal toxicity (ALGIT).
View Article and Find Full Text PDFImazaquin (IMQ) is an imidazolinone group herbicide widely used for weed control around the world. Due to excessive use during crop production, IMQ can accumulate in corn and soybeans, positing a potential threat to human health. In this study, a hapten that had high specificity and sensitivity was designed using computer-simulated technology.
View Article and Find Full Text PDFIn this research, we fabricated a sensitive monoclonal antibody (mAb) 2C3 that targeted etomidate (ET) and metomidate (MT) to establish a lateral-flow immunoassay (LFIA) that incorporated fluorescent microsphere sensors, enabling both the qualitative and quantitative detection of ET and MT within 10 min. Analysis indicated that the visual colorimetric values for ET and MT in water samples were 0.3 μg kg, respectively, with quantitative detection ranges of 0.
View Article and Find Full Text PDFBackground: Preoperative determination of muscular infiltration is crucial for appropriate treatment planning in patients with muscle-invasive bladder cancer (MIBC). We aimed to explore early diagnostic biomarkers in serum for MIBC in this study.
Methods: The expression profiles of long noncoding RNA (lncRNA) were initially screened by high-throughput sequencing and evaluation of potential lncRNAs were conducted by two phases of RT-qPCR assays using serum samples from 190 patients with MIBC and 190 non-muscle-invasive BC (NMIBC) patients.
Circularly polarized luminescence (CPL) has garnered significant research attention. Achieving a high luminescence dissymmetry factor (glum) is a key challenge in this field. Herein, we reported, for the first time, the fabrication of a chiral assembled film consisting of chiral D-/L-Selenium nanoparticles (D-/L-Se NPs) and DSPE-PEG-NH2 modified upconversion nanoparticles (DPNUCNPs) with remarkable CPL properties that were generated by the interfacial self-assembly technique.
View Article and Find Full Text PDF