Publications by authors named "A Poupon"

There is an urgent need for alternative therapies targeting human dendritic cells (DCs) that could reverse inflammatory syndromes in many autoimmune and inflammatory diseases and organ transplantations. Here, we describe a bispecific antibody (bsAb) strategy tethering two pathogen-recognition receptors at the surface of human DCs. This cross-linking switches DCs into a tolerant profile able to induce regulatory T-cell differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2-neutralizing antibodies (nABs) have shown potential in COVID-19 treatment, but resistant strains have made most existing nABs ineffective, highlighting the need for new cocktails targeting distinct epitopes.
  • A discovery program used traditional methods combined with AI predictions to identify two potent nABs, which were validated through animal testing.
  • However, structural analysis revealed that the AI predictions were flawed, as both nABs targeted the same binding epitope, emphasizing that experimental validation is crucial in selecting effective nABs.
View Article and Find Full Text PDF

Developing modulatory antibodies against G protein-coupled receptors is challenging. In this study, we targeted the follicle-stimulating hormone receptor (FSHR), a significant regulator of reproduction, with variable domains of heavy chain-only antibodies (VHHs). We built two immune VHH libraries and submitted them to multiplexed phage display approaches.

View Article and Find Full Text PDF

Monoclonal antibodies are biopharmaceuticals with a very long half-life due to the binding of their Fc portion to the neonatal receptor (FcRn), a pharmacokinetic property that can be further improved through engineering of the Fc portion, as demonstrated by the approval of several new drugs. Many Fc variants with increased binding to FcRn have been found using different methods, such as structure-guided design, random mutagenesis, or a combination of both, and are described in the literature as well as in patents. Our hypothesis is that this material could be subjected to a machine learning approach in order to generate new variants with similar properties.

View Article and Find Full Text PDF

Developing a therapeutic antibody is a long, tedious, and expensive process. Many obstacles need to be overcome, such as biophysical properties (issues of solubility, stability, weak production yields, etc.), as well as cross-reactivity and subsequent toxicity, which are major issues.

View Article and Find Full Text PDF