Publications by authors named "A Portone"

A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues.

View Article and Find Full Text PDF

Current and tests applied to assess the safety of medical devices retain several limitations, such as an incomplete ability to faithfully recapitulate human features, and to predict the response of human tissues together with non-trivial ethical aspects. We here challenged a new hybrid biofabrication technique that combines bioprinting and Fast Diffusion-induced Gelation strategy to generate a vessel-like structure with the attempt to spatially organize fibroblasts, smooth-muscle cells, and endothelial cells. The introduction of Fast Diffusion-induced Gelation minimizes the endothelial cell mortality during biofabrication and produce a thin endothelial layer with tunable thickness.

View Article and Find Full Text PDF

The Corning Epic label-free (ELF) system is an innovative technology widely used in drug discovery, immunotherapy, G-protein-associated studies, and biocompatibility tests. Here, we challenge the use of ELF to further investigate the biocompatibility of resins used in manufacturing of blood filters, a category of medical devices representing life-saving therapies for the increasing number of patients with kidney failure. The biocompatibility assays were carried out by developing a cell model aimed at mimicking the clinical use of the blood filters and complementing the existing cytotoxicity assay requested by ISO10993-5.

View Article and Find Full Text PDF

Fibrosis is shared in multiple diseases with progressive tissue stiffening, organ failure and limited therapeutic options. This unmet need is also due to the lack of adequate pre-clinical models to mimic fibrosis and to be challenged novel by anti-fibrotic therapeutic venues. Here using bioprinting, we designed a novel 3D model where normal human healthy fibroblasts have been encapsulated in type I collagen.

View Article and Find Full Text PDF

The resorption rate of autologous fat transfer (AFT) is 40-60% of the implanted tissue, requiring new surgical strategies for tissue reconstruction. We previously demonstrated in a rabbit model that AFT may be empowered by adipose-derived mesenchymal stromal/stem cells (AD-MSCs), which improve graft persistence by exerting proangiogenic/anti-inflammatory effects. However, their fate after implantation requires more investigation.

View Article and Find Full Text PDF