A hallmark event in neurodegenerative diseases is represented by the misfolding, aggregation and accumulation of proteins, leading to cellular and network dysfunction preceding the development of clinical symptoms by years. Early diagnosis represents a crucial issue in the field of neuroscience as it offers the potential to utilize this therapeutic window in the future to manage disease-modifying therapy. Seed amplification assays, including Real-Time Quaking-Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA), have emerged in recent years as innovative techniques developed to detect minute amounts of amyloidogenic proteins.
View Article and Find Full Text PDFPsychoneuroendocrinology
December 2024
Adversities associated with isolation during adolescence, including the lack of appropriate emotional and social experiences, can jeopardize the individual development leading to the onset of mental illnesses such as major depressive disorder. Girls have higher rates of depression compared to boys; however, the relative contribution of biological and cultural factors to such a gender-dependent difference remains unclear. To identify the role of biological factors in this distinct susceptibility, we exposed adolescent C57BL/6 male and female mice (n = 12-14) to social isolation and we evaluated their behavioral responses, investigating both emotional and cognitive competencies during adolescence.
View Article and Find Full Text PDFCreutzfeldt-Jakob disease (CJD) is a rare, rapidly progressive neurodegenerative disorder, characterized by the accumulation of abnormal prion proteins in the brain. While CJD has some typical clinical features, its presentation can be quite heterogeneous, particularly in the early stages of the disease, posing challenges in diagnosis. Atypical manifestations of CJD can mimic various neurodegenerative disorders, including atypical parkinsonisms.
View Article and Find Full Text PDFThe development of in vitro seed amplification assays (SAA) detecting misfolded alpha-synuclein (αSyn) in cerebrospinal fluid (CSF) and other tissues has provided a pathology-specific biomarker for Lewy body disease (LBD). However, αSyn SAA diagnostic performance in early pathological stages or low Lewy body (LB) pathology load has only been assessed in small cohorts. Moreover, the relationship between SAA kinetic parameters, the number of αSyn brain seeds and the LB pathology burden assessed by immunohistochemistry has never been systematically investigated.
View Article and Find Full Text PDF