Publications by authors named "A Platero Zamarreno"

Jasmonates (JAs) are important phytohormones that regulate plant tolerance to biotic and abiotic stresses, and developmental processes. Distinct JAs in different plant lineages activate a conserved signaling pathway that mediates these responses: dinor-12-oxo-phytodienoic acid (dn-OPDA) isomers in bryophytes and lycophytes, and JA-Ile in most vascular plants. In many cases, the final responses triggered by these phytohormones depend on the accumulation of specialized metabolites.

View Article and Find Full Text PDF

Jasmonates are growth regulators that play a key role in flower development, fruit ripening, root growth, and plant defence. The study explores the coordination of floral organ maturation to ensure proper flower opening for pollination and fertilization. A new mutant (jar1b) was discovered, lacking petal elongation and flower opening but showing normal pistil and stamen development, leading to parthenocarpic fruit development.

View Article and Find Full Text PDF

In angiosperms, wound-derived signals travel through the vasculature to systemically activate defence responses throughout the plant. In Arabidopsis thaliana, activity of vasculature-specific Clade 3 glutamate receptor-like (GLR) channels is required for the transmission of electrical signals and cytosolic Ca ([Ca]) waves from wounded leaves to distal tissues, triggering activation of oxylipin-dependent defences. Whether nonvascular plants mount systemic responses upon wounding remains unknown.

View Article and Find Full Text PDF

Riboflavins are secreted under iron deficiency as a part of the iron acquisition Strategy I, mainly when the external pH is acidic. In plants growing under Fe-deficiency and alkaline conditions, riboflavins have been reported to accumulate inside the roots, with very low or negligible secretion. However, the fact that riboflavins may undergo hydrolysis under alkaline conditions has been so far disregarded.

View Article and Find Full Text PDF
Article Synopsis
  • Chloroplasts are important for how plants grow and adapt to tough conditions like stress.
  • A study looked at a special plant mutant called noxy8 and found that two related proteins, CLPC1 and CLPC2, have different jobs in the chloroplasts.
  • CLPC1 helps keep everything running smoothly, while CLPC2 is more involved when the plant is fighting off infections, meaning they both play unique roles in how plants survive and respond to problems.
View Article and Find Full Text PDF