Curr Opin Syst Biol
September 2022
Decades of biochemical reconstitution, genetics and structural biology studies have established a vast knowledge base on the molecular mechanisms of chromatin regulation and transcription. A remaining challenge is to understand how these intricate biochemical systems operate in the context of the 3D genome organization and in the crowded and compartmentalized nuclear milieu. Here we review recent progress in this area based on high-resolution imaging approaches.
View Article and Find Full Text PDFHow distal enhancers physically control promoters over large genomic distances, to enable cell-type specific gene expression, remains obscure. Using single-gene super-resolution imaging and acute targeted perturbations, we define physical parameters of enhancer-promoter communication and elucidate processes that underlie target gene activation. Productive enhancer-promoter encounters happen at 3D distances δ200 nm - a spatial scale corresponding to unexpected enhancer-associated clusters of general transcription factor (GTF) components of the Pol II machinery.
View Article and Find Full Text PDFTranscription is a dynamic process. To detect the dynamic relationship among protein clusters of RNA polymerase II and coactivators, gene loci, and transcriptional activity, we insert an MS2 repeat, a TetO repeat, and inteins with a selection marker just downstream of the transcription start site. By optimizing the individual elements, we develop the Spliced TetO REpeAt, MS2 repeat, and INtein sandwiched reporter Gene tag (STREAMING-tag) system.
View Article and Find Full Text PDFLive cell imaging with high spatiotemporal resolution and high detection sensitivity facilitates the study of the dynamics of cellular structure and function. However, extracting high-resolution 4D (3D space plus time) information from live cells remains challenging, because current methods are slow, require high peak excitation intensities or suffer from high out-of-focus background. Here we present 3D interferometric lattice light-sheet (3D-iLLS) imaging, a technique that requires low excitation light levels and provides high background suppression and substantially improved volumetric resolution by combining 4Pi interferometry with selective plane illumination.
View Article and Find Full Text PDFVisualizing the 4D genome in live cells is essential for understanding its regulation. Programmable DNA-binding probes, such as fluorescent clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector (TALE) proteins have recently emerged as powerful tools for imaging specific genomic loci in live cells. However, many such systems rely on genetically-encoded components, often requiring multiple constructs that each must be separately optimized, thus limiting their use.
View Article and Find Full Text PDF