Durum wheat cultivation in Mediterranean regions is threatened by abiotic factors, mainly related to the effects of climate change, and biotic factors such as the leaf rust disease. This situation requires an in-depth knowledge of how predicted elevated temperatures and [CO] will affect durum wheat-leaf rust interactions. Therefore, we have characterised the response of one susceptible and two resistant durum wheat accessions against leaf rust under different environments in greenhouse assays, simulating the predicted conditions of elevated temperature and [CO] in the far future period of 2070-2099 for the wheat growing region of Cordoba, Spain.
View Article and Find Full Text PDFIn the current scenario of climate change, global agricultural systems are facing remarkable challenges in order to increase production, while reducing the negative environmental impact. Nano-enabled technologies have the potential to revolutionise farming practices by increasing the efficiency of inputs and minimising losses, as well as contributing to sustainable agriculture. Two promising applications of nanotechnology in agriculture are nanobiosensors and nanoformulations (NFs).
View Article and Find Full Text PDFBioherbicides are composed of microorganisms or natural compounds and are used for weed control; however, they have specific weaknesses and constraints that hinder their development and success under field conditions. Nanotechnology can help to overcome these limitations by providing a good starting point for the design of specific formulations and carriers that minimize the deficiencies of natural compounds and microorganisms, such as low solubility, short shelf life or a loss of viability. In addition, nanoformulations can help to improve the efficacy of bioherbicides by increasing their effectiveness and bioavailability, reducing the amount required for a treatment, and enhancing their ability to target specific weeds while preserving the crop.
View Article and Find Full Text PDFAgriculture must overcome several challenges in order to increase—or even maintain—production, while also reducing negative environmental impact. Nanotechnology, fundamentally through the development of smart delivery systems and nanocarriers, can contribute to engineering more efficient and less contaminant agrochemicals. This Collection presents recent related works, covering nanodevices that improve crop protection against pests and diseases, nanoformulations for enhancing plant nutrition, and nanomaterials strengthening the general crop performance.
View Article and Find Full Text PDFNanotechnology is emerging as a very promising tool towards more efficient and sustainable practices in agriculture. In this work, we propose the use of non-toxic calcium phosphate nanoparticles doped with urea (U-ACP) for the fertilization of plants. U-ACP nanoparticles present very similar morphology, structure, and composition than the amorphous precursor of bone mineral, but contain a considerable amount of nitrogen as adsorbed urea (up to ca.
View Article and Find Full Text PDF