Activating the strong C-C σ-bond is a central problem in organic synthesis. Directly generating activated C centers by metalation of structures containing strained four-membered rings is one maneuver often employed in multistep syntheses. This usually requires high temperatures and/or precious transition metals.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2021
Scanning probe microscopy has become an essential tool to not only study pristine surfaces but also on-surface reactions and molecular self-assembly. Nonetheless, due to inherent limitations, some atoms or (parts of) molecules are either not imaged or cannot be unambiguously identified. Herein, we discuss the arrangement of two different nonplanar molecular assemblies of -hexaphenyl-dicarbonitrile (Ph(CN)) on Au(111) based on a combined theoretical and experimental approach.
View Article and Find Full Text PDFWithin the collection of surface-supported reactions currently accessible for the production of extended molecular nanostructures under ultra-high vacuum, Ullmann coupling has been the most successful in the controlled formation of covalent single C-C bonds. Particularly advanced control of this synthetic tool has been obtained by means of hierarchical reactivity, commonly achieved by the use of different halogen atoms that consequently display distinct activation temperatures. Here we report on the site-selective reactivity of certain carbon-halogen bonds.
View Article and Find Full Text PDFWe have experimentally determined the lateral registry and geometric structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P) adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction (PhD), and compared the experimental results to density functional theory (DFT) calculations that included van der Waals corrections within the Tkatchenko-Scheffler approach. Both 2H-P and Cu-P adsorb with their center above a surface bridge site. Consistency is obtained between the experimental and DFT-predicted structural models, with a characteristic change in the corrugation of the four N atoms of the molecule's macrocycle following metalation.
View Article and Find Full Text PDF