Publications by authors named "A Perez-Martos"

Human mitochondrial DNA (mtDNA) shows extensive within population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA.

View Article and Find Full Text PDF

Electrons feed into the mitochondrial electron transport chain (mETC) from NAD- or FAD-dependent enzymes. A shift from glucose to fatty acids increases electron flux through FAD, which can saturate the oxidation capacity of the dedicated coenzyme Q (CoQ) pool and result in the generation of reactive oxygen species. To prevent this, the mETC superstructure can be reconfigured through the degradation of respiratory complex I, liberating associated complex III to increase electron flux via FAD at the expense of NAD.

View Article and Find Full Text PDF

Electron flux in the mitochondrial electron transport chain is determined by the superassembly of mitochondrial respiratory complexes. Different superassemblies are dedicated to receive electrons derived from NADH or FADH2, allowing cells to adapt to the particular NADH/FADH2 ratio generated from available fuel sources. When several fuels are available, cells adapt to the fuel best suited to their type or functional status (e.

View Article and Find Full Text PDF

The efficiency of the cellular oxidative phosphorylation system was recently shown to be modulated by common mitochondrial tRNA(A) (rg) haplotypes. The molecular mechanism by which some mt-Tr haplotypes induce these functional differences remains undetermined. Common polymorphisms in mouse mt-Tr genes affect the size of the dihydrouridine loop in the mature tRNA, producing loops of between five and seven nucleotides, the largest being a rare variant among mammals.

View Article and Find Full Text PDF