Publications by authors named "A Penk"

Article Synopsis
  • * The study updates the Cyclic Peptide Matching program (cPEPmatch) to identify cyclic peptides that mimic the GAG-binding sites of antithrombin III (ATIII), a key anticoagulant.
  • * By using computational tools and experimental validation methods, researchers identified a promising cyclic peptide binder, demonstrating their potential for new therapeutic applications targeting GAGs.
View Article and Find Full Text PDF

NMR spectroscopy techniques can provide important information about protein-ligand interactions. Here we tested an NMR approach which relies on the measurement of paramagnetic relaxation enhancements (PREs) arising from analogous cationic, anionic or neutral soluble nitroxide molecules, which distribute around the protein-ligand complex depending on near-surface electrostatic potentials. We applied this approach to two protein-ligand systems, interleukin-8 interacting with highly charged glycosaminoglycans and the SH2 domain of Grb2 interacting with less charged phospho-tyrosine tripeptides.

View Article and Find Full Text PDF

The interactions of glycosaminoglycans (GAG) with proteins of the extracellular matrix govern and regulate complex physiological functions including cellular growth, immune response, and inflammation. Repetitive presentation of GAG binding motifs, as found in native proteoglycans, might enhance GAG-protein binding through multivalent interactions. Here, we report the chemical synthesis of dendritic GAG oligomers constructed of nonasulfated hyaluronan tetrasaccharides for investigating the binding of the protein chemokine interleukin 8 (IL-8) to artificial, well-defined proteoglycan architectures.

View Article and Find Full Text PDF

Fibro-calcific aortic valve disease (FCAVD) is a pathological condition marked by overt fibrous and calcific extracellular matrix (ECM) accumulation that leads to valvular dysfunction and left ventricular outflow obstruction. Costly valve implantation is the only approved therapy. Multiple pharmacological interventions are under clinical investigation, however, none has proven clinically beneficial.

View Article and Find Full Text PDF

Recognition and binding of regulatory proteins to glycosaminoglycans (GAGs) from the extracellular matrix is a process of high biological importance. The interaction between negatively charged sulfate or carboxyl groups of the GAGs and clusters of basic amino acids on the protein is crucial in this binding process and it is believed that electrostatics represent the key factor for this interaction. However, given the rather undirected nature of electrostatics, it is important to achieve a clear understanding of its role in protein-GAG interactions and how specificity and selectivity in these systems can be achieved, when the classical key-lock binding motif is not applicable.

View Article and Find Full Text PDF