Publications by authors named "A Pelizzola"

We investigate the possibility of extending the notion of temperature in a stochastic model for the RNA or protein folding driven out of equilibrium. We simulate the dynamics of a small RNA hairpin subject to an external pulling force, which is time-dependent. First, we consider a fluctuation-dissipation relation (FDR) whereby we verify that various effective temperatures can be obtained for different observables, only when the slowest intrinsic relaxation timescale of the system regulates the dynamics of the system.

View Article and Find Full Text PDF

Protein energy landscapes are highly complex, yet the vast majority of states within them tend to be invisible to experimentalists. Here, using site-directed mutagenesis and exploiting the simplicity of tandem-repeat protein structures, we delineate a network of these states and the routes between them. We show that our target, gankyrin, a 226-residue 7-ankyrin-repeat protein, can access two alternative (un)folding pathways.

View Article and Find Full Text PDF

In a cellular environment, confinement and macromolecular crowding play an important role in thermal stability and folding kinetics of a protein. We have resorted to a generalized version of the Wako-Saitô-Muñoz-Eaton model for protein folding to study the behavior of six different protein structures confined between two walls. Changing the distance 2R between the walls, we found, in accordance with previous studies, two confinement regimes: starting from large R and decreasing R, confinement first enhances the stability of the folded state as long as this is compact and until a given value of R; then a further decrease of R leads to a decrease of folding temperature and folding rate.

View Article and Find Full Text PDF

An Ising-like model of proteins is used to investigate the mechanical unfolding of the green fluorescent protein along different directions. When the protein is pulled from its ends, we recover the major and minor unfolding pathways observed in experiments. Upon varying the pulling direction, we find the correct order of magnitude and ranking of the unfolding forces.

View Article and Find Full Text PDF

We apply the Wako-Saito-Muñoz-Eaton model to the study of myotrophin, a small ankyrin repeat protein, whose folding equilibrium and kinetics have been recently characterized experimentally. The model, which is a native-centric with binary variables, provides a finer microscopic detail than the Ising model that has been recently applied to some different repeat proteins, while being still amenable for an exact solution. In partial agreement with the experiments, our results reveal a weakly three-state equilibrium and a two-state-like kinetics of the wild-type protein despite the presence of a nontrivial free-energy profile.

View Article and Find Full Text PDF