Publications by authors named "A Pelagalli"

Canine mesenchymal stromal cells (MSCs) possess the capacity to differentiate into a variety of cell types and secrete a wide range of bioactive molecules in the form of soluble and membrane-bound exosomes. Extracellular vesicles/exosomes are nano-sized vesicles that carry proteins, lipids, and nucleic acids and can modulate recipient cell response in various ways. The process of exosome formation is a physiological interaction between cells.

View Article and Find Full Text PDF

There is growing evidence by the literature that the unbalance between androgens and estrogens is a relevant condition associated with a common canine reproductive disorder known as cryptorchidism. The role of estrogens in regulating testicular cell function and reproductive events is supposedly due to the wide expression of two nuclear estrogen receptors (ERs), ER-alpha and ER-beta and a trans-membrane G protein-coupled estrogen receptor (GPER) in the testis. In this study, immunohistochemistry, Western blotting and qRT-PCR were used to assess the distribution and expression of GPER in the testis-epididymal complex in the normal and cryptorchid dog.

View Article and Find Full Text PDF

Three Special Issues, so far, have been dedicated to overall MSC prospective biology, from cell regulation to tissue regeneration [...

View Article and Find Full Text PDF

Platelet products are commonly used in regenerative medicine due to their effects on the acceleration and promotion of wound healing, reduction of bleeding, synthesis of new connective tissue, and revascularization. Furthermore, a novel approach for the treatment of damaged tissues, following trauma or other pathological damages, is represented by the use of mesenchymal stem cells (MSCs). In dogs, both platelet-rich plasma (PRP) and MSCs have been suggested to be promising options for subacute skin wounds.

View Article and Find Full Text PDF

Regenerative medicine represents a growing hot topic in biomedical sciences, aiming at setting out novel therapeutic strategies to repair or regenerate damaged tissues and organs. For this perspective, human mesenchymal stem cells (hMSCs) play a key role in tissue regeneration, having the potential to differentiate into many cell types, including chondrocytes. Accordingly, in the last few years, researchers have focused on several in vitro strategies to optimize hMSC differentiation protocols, including those relying on epigenetic manipulations that, in turn, lead to the modulation of gene expression patterns.

View Article and Find Full Text PDF