Neuronal Per-Arnt-Sim (PAS) domain protein 4 (Npas4) is a key protein that intervenes in GABA synapse scaling and neurotrophicity enhancing. Since GABA and neurotrophicity are implicated in stress response and Npas4-deficient rodents exhibit behavioral alterations, an investigation was designed in rats to verify whether stress-induced spontaneous hippocampus Npas4 mRNA expression would be associated with specific patterns of stress response. The rats were exposed to one of three stressor levels: no stress (CTL, n = 15), exposure to a footshock apparatus (Sham, S, n = 40) and footshock (F, n = 80).
View Article and Find Full Text PDFExposure to organophosphorus (OP) compounds, such as pesticides and the chemical warfare agents (soman and sarin), respectively represents a major health problem and a threat for civilian and military communities. OP poisoning may induce seizures, status epilepticus and even brain lesions if untreated. We recently proved that a combination of atropine sulfate and ketamine, a glutamatergic antagonist, was effective as an anticonvulsant and neuroprotectant in mice and guinea-pigs exposed to soman.
View Article and Find Full Text PDFIn patients suffering from stress-related pathologies and depression, frontal cortex GABA and glutamate contents are reported to decrease and increase, respectively. This suggests that the GABA and/or glutamate content may participate in pathological phenotype expression. Whether differences in frontal cortex GABA and glutamate contents would be associated with specific behavioral and neurobiological patterns remains unclear, especially in the event of exposure to moderate stress.
View Article and Find Full Text PDFSulfur mustard (SM) is a strong bifunctional alkylating agent that produces severe tissue injuries characterized by erythema, edema, subepidermal blisters and a delayed inflammatory response after cutaneous exposure. However, despite its long history, SM remains a threat because of the lack of effective medical countermeasures as the molecular mechanisms of these events remain unclear. This limited number of therapeutic options results in part of an absence of appropriate animal models.
View Article and Find Full Text PDFIn skeletal muscle, autophagy is activated in multiple physiological and pathological conditions, notably through the transcriptional regulation of autophagy-related genes by FoxO3. However, recent evidence suggests that autophagy could also be regulated by post-transcriptional mechanisms. The purpose of the study was therefore to determine the temporal regulation of transcriptional and post-transcriptional events involved in the control of autophagy during starvation (4h) and nutrient restoration (4h) in C2C12 myotubes.
View Article and Find Full Text PDF