Publications by authors named "A Patri"

The safety of titanium dioxide (TiO), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure.

View Article and Find Full Text PDF
Article Synopsis
  • * These FQAH phases are linked to unique electron interactions that lead to the formation of a Chern-1 band, which isn't present in noninteracting conditions.
  • * The study also explores additional multi-layer graphene structures and identifies conditions under which a similar Chern-1 band can occur, potentially allowing for FQAH physics in other configurations.
View Article and Find Full Text PDF

The prevalence of ionic silver and silver nanomaterials in hygiene products has been increasing due to their antimicrobial activity. While numerous studies have examined the effects of nanosilver in laboratory settings, there is a limited understanding of its impact on reproductive tissues, as well as its biodistribution and toxicity upon intra-vaginal exposure. If ionic or nanosilver enters adjacent and internal tissues via intra-vaginal exposure, the overuse of hygiene products containing silver may potentially threaten woman's health.

View Article and Find Full Text PDF

Background: Alopecia areata (AA) is an organ-specific autoimmune disease that affects the hair follicles of the scalp and the rest of the body causing hair loss. Due to the unpredictable course of AA and the different degrees of severity of hair loss, only a few well-designed clinical studies with a low number of patients are available. Also, there is no specific cure, but topical and systemic anti-inflammatory and immune system suppressant drugs are used for treatment.

View Article and Find Full Text PDF

Microplastics are increasingly reported, not only in the environment but also in a wide range of food commodities. While studies on microplastics in food abound, the current state of science is limited in its application to regulatory risk assessment by a continued lack of standardized definitions, reference materials, sample collection and preparation procedures, fit-for purpose analytical methods for real-world and environmentally relevant plastic mixtures, and appropriate quality controls. This is particularly the case for nanoplastics.

View Article and Find Full Text PDF