In this study, the effect of the cell density of monolithic catalysts was investigated and further mathematically modeled on cordierite supports used in CO methanation. Commercial cordierite monoliths with 200, 400, and 500 cpsi cell densities were coated by immersion into an ethanolic suspension of Ni/CeO active phase. SEM-EDS analysis confirmed that, owing to the low porosity of cordierite (surface area < 1 m g), the Ni/CeO diffusion into the walls was limited, especially in the case of low and intermediate cell density monoliths; thus, active phase was predominantly loaded onto the channels' external surface.
View Article and Find Full Text PDFThis work proposes a rigorous mathematical model capable of reproducing the adsorption process in dynamic regime on advanced monoliths geometries. For this, four bed geometries with axisymmetric distribution of channels and similar solid mass were proposed. In each geometry a different distribution of channels was suggested, maintaining constant the bed dimensions of 15 cm high and 5 cm radius.
View Article and Find Full Text PDFMetformin consumption for diabetes treatment is increasing, leading to its presence in wastewater treatment plants where conventional methods cannot remove it. Therefore, this work aims to analyze the performance of advanced oxidation processes using sulfate radicals in the degradation of metformin from water. Experiments were performed in a photoreactor provided with a low-pressure Hg lamp, using KSO as oxidant and varying the initial metformin concentration (C), oxidant concentration (C), temperature (T), and pH in a response surface experimental design.
View Article and Find Full Text PDFChili seeds (CS) represent one of the most abundant residues in Mexico due to the high production and consumption. In this work, CS were used as raw material for the production of low-cost adsorbents for the removal of methylene blue from water. The adsorbents were synthesized from a hydrothermal treatment (based on a surface response experiment design) and characterized texturally by assessing changes in their properties.
View Article and Find Full Text PDFIn this work chili seeds (Capsicum annuum) were used as raw material in the synthesis of biochar at temperatures between 400 and 600 °C. The samples were chemically, texturally and morphologically characterized and their properties were correlated with the calcination temperature. The adsorption mechanism of IBP was elucidated by analyzing the effect of solution pH, ionic strength and temperature, whereas that, the intraparticle diffusion mechanism was clarified through the application of a 3D diffusional model.
View Article and Find Full Text PDF