Publications by authors named "A Pallandre"

Microfluidic devices are becoming increasingly popular in protein analysis due to their ability to reduce sample and buffer volumes. However, there is a research gap concerning the coupling of this technology with ion mobility and mass spectrometry (IM-MS). This study aims to fill this void by introducing the manufacture and the characterization of a microsize exclusion chromatography (μSEC) module for fast desalting and its integration into microfluidics, along with its coupling to electrospray ionization and ion mobility mass spectrometry (ESI-IM-MS).

View Article and Find Full Text PDF

In this report, high-frequency electric impedance spectroscopy was performed to investigate ionic transport through nanochannels. Special attention was focused on (i) conductance behaviors depending on the role of cation valence in three background electrolytes (XCln): monovalent 1-1 (K and Cl), divalent 2-1 (Mg and 2Cl), and trivalent 3-1 (La and 3Cl), (ii) the effects of proton and bicarbonate ions on bulk and surface conductance, and (iii) the connected microchannel dimension (surface/height ratio aspect) within the nanochannel apparent conductance. The results highlight a net quantitative increase in surface silanol density and a strong decrease in surface ionization degree when lanthanum cations are employed.

View Article and Find Full Text PDF

Protein biomarkers have been the subject of intensive studies as a target for disease diagnostics and monitoring. Indeed, biomarkers have been extensively used for personalized medicine. In biological samples, these biomarkers are most often present in low concentrations masked by a biologically complex proteome (e.

View Article and Find Full Text PDF

In humans, tetrahydrobiopterin (H4Bip) is the cofactor of several essential hydroxylation reactions which dysfunction cause very serious diseases at any age. Hence, the determination of pterins in biological media is of outmost importance in the diagnosis and monitoring of H4Bip deficiency. More than half a century after the discovery of the physiological role of H4Bip and the recent advent of gene therapy for dopamine and serotonin disorders linked to H4Bip deficiency, the quantification of quinonoid dihydrobiopterin (qH2Bip), the transient intermediate of H4Bip, has not been considered yet.

View Article and Find Full Text PDF

Inborn errors of monoamine neurotransmitter metabolism are rare genetic diseases classified as catecholamine and serotonin metabolism disorders or neurotransmitter transportopathies. To diagnose these orphan diseases, monoamine metabolites have been identified and validated as cerebrospinal fluid (CSF) biomarkers: 5-hydroxy-tryptophane, 5-hydroxy-indol-acetic acid, 3-ortho-methyl-DOPA, homovanillic acid, and 3-methoxy-4-hydroxyphenylglycol. The present work presents a UHPLC-MS/MS method developed for the quantification of these metabolites in CSF and compares it with a previously described UHPLC with fluorescence detection (UHPLC-FD) method.

View Article and Find Full Text PDF