Background: The introduction of antibody-drug conjugates represents a significant advancement in targeted therapy of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Our study aims to investigate the role of the DNA damage response pathway and the impact of PARP1 inhibition, utilizing talazoparib, on the response of AML and ALL cells to Gemtuzumab ozogamicin (GO) and Inotuzumab ozogamicin (INO), respectively.
Methods: AML and ALL cells were treated with GO, INO and γ-calicheamicin in order to induce severe DNA damage and activate the G2/M cell-cycle checkpoint in a dose- and time-dependent manner.
Background: COVID-19, whose causative pathogen is the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), was declared a pandemic in March 2020. The gastrointestinal tract is one of the targets of this virus, and mounting evidence suggests that gastrointestinal symptoms may contribute to disease severity. The gut-lung axis is involved in the immune response to SARS-CoV-2; therefore, we investigated whether COVID-19 patients' bacterial and fungal gut microbiome composition was linked to disease clinical outcome.
View Article and Find Full Text PDFThe members of the Poly(ADP-ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a complex hematological malignancy characterized by genetic and clinical heterogeneity and high mortality. Despite the recent introduction of novel pharmaceutical agents in hemato-oncology, few advancements have been made in AML for decades. In the last years, the therapeutic options have rapidly changed, with the approval of innovative compounds that provide new opportunities, together with new challenges for clinicians: among them, on 1 September, 2017 the Food and Drug Administration granted approval for Gemtuzumab Ozogamicin (GO) in combination with daunorubicin and cytarabine for the treatment of adult patients affected by newly diagnosed CD33 AML.
View Article and Find Full Text PDF