Publications by authors named "A P Sweere"

This work provides a framework to digitally assess any droplet's static and dynamic contact angles on coatings and polymeric substrates. We are introducing a new dissipative particle dynamics coarse-grained model to attain the spatiotemporal conditions and the coexistence of different phases that such investigation dictates. Two computational techniques are additionally developed; a robust technique to calculate the static contact angle using density profiles and a perturbation method to evaluate dynamic contact angles.

View Article and Find Full Text PDF

In drug and vaccine development, the designed protein formulation should be highly stable against the temperature, pH, buffer, excipients, and other environmental settings. Similarly, in a sensing unit, one needs to know how strongly two biomolecules bind to guide the design of the biorecognition unit accordingly. Typically, the community performs a series of experiments to thoroughly examine the parameter space, the so-called design-of-experiment (DoE) method, to identify the optimal formulation conditions.

View Article and Find Full Text PDF

We have calculated the excess free energy of mixing of 1053 binary mixtures with the OPLS-AA force field using two different methods: thermodynamic integration (TI) of molecular dynamics simulations and the Pair Configuration to Molecular Activity Coefficient (PAC-MAC) method. PAC-MAC is a force field based quasi-chemical method for predicting miscibility properties of various binary mixtures. The TI calculations yield a root mean squared error (RMSE) compared to experimental data of 0.

View Article and Find Full Text PDF

We present the Pair Configurations to Molecular Activity Coefficients (PAC-MAC) method. The method is based on the pair sampling technique of Blanco (Fan, C. F.

View Article and Find Full Text PDF

A reactor configuration consisting of two reactors with an exchange flow was used for the experimental simulation of large-scale conditions. The influence of fluctuations in oxygen concentration on the growth and metabolite production of baker's yeast was investigated by sparging one fermentor with air and one with nitrogen gas. It was found that the biomass yield decreased and the metabolite formation increased with rising circulation time (longer oxygen-unlimited and oxygen-limited periods).

View Article and Find Full Text PDF