Publications by authors named "A P Stetsenko"

Cas13-containing type VI CRISPR-Cas systems specifically target RNA; however, the mechanism of spacer acquisition remains unclear. We have previously reported the association of reverse transcriptase-Cas1 (RT-Cas1) fusion proteins with certain types of VI-A systems. Here, we show that RT-Cas1 fusion proteins are also recruited by type VI-B systems in bacteria from gut microbiomes, constituting a VI-B1 variant system that includes a CorA-encoding locus in addition to the CRISPR array and the RT-Cas1/Cas2 adaptation module.

View Article and Find Full Text PDF

Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identify a subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base.

View Article and Find Full Text PDF

The temporal difference learning (TDL) algorithm has been essential to conceptualizing the role of dopamine in reinforcement learning (RL). Despite its theoretical importance, it remains unknown whether a neuronal implementation of this algorithm exists in the brain. Here, we provide an interpretation of the recently described signaling properties of ventral tegmental area (VTA) GABAergic neurons and show that a circuitry of these neurons implements the TDL algorithm.

View Article and Find Full Text PDF
Article Synopsis
  • Ribosome biogenesis is a detailed process involving the maturation of ribosomal subunits, which requires the coordination of various proteins, RNAs, and enzymes.
  • The study focuses on ribosomal binding factor A (RbfA), detailing its crystal and NMR structures as well as a cryo-EM visualization of the 30S-RbfA complex.
  • The findings reveal that RbfA's role in ribosomal subunit maturation is similar in bacteria and mitochondria, suggesting potential targets for developing new antibiotics against bacterial infections.
View Article and Find Full Text PDF
Article Synopsis
  • A widespread commensal fungus poses a significant health risk due to its increasing resistance to current antifungal medications, particularly cycloheximide (CHX).
  • The lack of structural information has hampered the understanding of this resistance and the development of new treatment options.
  • Researchers successfully determined the structure of the ribosome and its complexes with inhibitors, revealing a key change in a specific ribosomal protein that accounts for CHX resistance, paving the way for future antifungal drug innovations.
View Article and Find Full Text PDF