Publications by authors named "A P Shorokhov"

Monolayers of transition metal dichalcogenides (TMDCs) demonstrate plenty of unique properties due to the band structure. Symmetry breaking brings second-order susceptibility to meaningful values resulting in the enhancement of corresponding nonlinear effects. Cooling the TMDC films to cryogenic temperatures leads to the emergence of two distinct photoluminescence peaks caused by the exciton and trion formation.

View Article and Find Full Text PDF

Optimal design of a silicon nitride waveguide structure composed of resonant nanoantennas for efficient light coupling with interlayer exciton emitters in a MoSe2-WSe2 heterostructure is proposed. Numerical simulations demonstrate up to eight times coupling efficiency improvement and twelve times Purcell effect enhancement in comparison with a conventional strip waveguide. Achieved results can be beneficial for development of on-chip non-classical light sources.

View Article and Find Full Text PDF
Article Synopsis
  • Single photon sources using semiconductor quantum dots are key elements in advancing optical quantum computing and cryptography, often utilizing Bragg resonators for emission control.
  • The challenge of fabricating complex periodic structures can be addressed by coupling these quantum dots with resonant nanoclusters made of high-index dielectric materials.
  • Experiments show that using magnetic Mie-type resonance in GaAs nanopillar oligomers with InAs quantum dots significantly enhances photon emission efficiency—up to 40 times compared to unstructured materials—indicating promising potential for developing nanoscale single-photon sources.
View Article and Find Full Text PDF

We report the experimental observation of the UV-visible upconverted luminescence of bulk silicon under pulsed infrared excitation. We demonstrate that non-stationary distribution of excited carriers leads to the emission at spectral bands never to our knowledge observed before. We show that the doping type and concentration alter the shape of luminescence spectra.

View Article and Find Full Text PDF

All-dielectric nanoparticle oligomers have recently emerged as promising candidates for nonlinear optical applications. Their highly resonant collective modes, however, are difficult to access by linearly polarized beams due to symmetry restraints. In this paper, we propose a new way to increase the efficiency of nonlinear processes in all-dielectric oligomers by tightly focused azimuthally polarized cylindrical vector beam illumination.

View Article and Find Full Text PDF