Environ Monit Assess
November 2024
In the pursuit of advancing sustainable wastewater treatment solutions in the industry, this study investigates the effect of chemical and thermal modifications on adsorbent geopolymer (GP) structure. Optimal conditions of sulfuric acid treatment and calcination temperature were determined to enhance the adsorption of the direct red dye 28 (DR28). Functional groups (FTIR), mineralogical composition (DRX), morphology (SEM-EDS), and physical properties (BET/BJH) were employed to study the effect of attack with HSO and calcination on GP characteristics.
View Article and Find Full Text PDFBiopolishing is a textile process that uses cellulases to improve the pilling resistance of fabrics. Although the process improves the pilling resistance, softness and color brightness of fabrics, it causes a significant loss of tensile strength in treated fabrics. The present work studied the use of cellulase immobilized on kaolin by adsorption and covalent bonding in biopolishing to get around this problem.
View Article and Find Full Text PDFScaffold-type biomaterials are crucial for application in tissue engineering. Among them, the use of a nonwoven scaffold has grown in recent years and has been widely investigated for the regeneration of different types of tissues. Several polymers, whether they are synthetic, biopolymers or both, have been used to produce a scaffold that can mimic the natural tissue to which it will be applied to.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2017
Tympanic membrane perforations are due to common otologic problems. The current treatments to heal tympanic membrane perforation, such as myringoplasty, have some disadvantages, including the need for autologous grafting, which is rapidly absorbed by the organism before perforation recovery is complete. To improve the structural and functional tympanic membrane healing after surgery, we propose a new branch of artificial grafts.
View Article and Find Full Text PDFThe primary advantages of electrospun membranes include the ability to obtain very thin fibers that are on the order of magnitude of several nanometers with a considerable superficial area and the possibility for these membranes to be manipulated and processed for many different applications. The purpose of this study is to evaluate and quantify the transport mechanisms that control the release of drugs from polymer-based sandwich membranes produced using the electrospinning processes. These electrospun membranes were composed of poly(lactic acid) (PLA) because it is one of the most promising biodegradable polymers due to its mechanical properties, thermoplastic processability and biological properties, such as its biocompatibility and biodegradability.
View Article and Find Full Text PDF