After olfactory bulbectomy, animals are often used as a model of major depression or sporadic Alzheimer's disease and, hence, the status of this model is still disputable. To elucidate the nature of alterations in the expression of the genome after the operation, we analyzed transcriptomes of the cortex, hippocampus, and cerebellum of the olfactory bulbectomized (OBX) mice. Analysis of the functional significance of genes in the brain of OBX mice indicates that the balance of the GABA/glutamatergic systems is disturbed with hyperactivation of the latter in the hippocampus, leading to the development of excitotoxicity and induction of apoptosis in the background of severe mitochondrial dysfunction and astrogliosis.
View Article and Find Full Text PDFMutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment.
View Article and Find Full Text PDFProteasomes degrade most intracellular proteins. Several different forms of proteasomes are known. Little is known about the role of specific proteasome forms in the central nervous system (CNS).
View Article and Find Full Text PDFDysfunction of the RNA-binding protein (RBP) FUS implicated in RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Mutations affecting FUS nuclear localization can drive RNA splicing defects and stimulate the formation of non-amyloid inclusions in affected neurons. However, the mechanism by which FUS mutations contribute to the development of ALS remains uncertain.
View Article and Find Full Text PDF