Publications by authors named "A P Renjini"

The study presents a novel technique for lung auscultation based on graph theory, emphasizing the potential of graph parameters in distinguishing lung sounds and supporting earlier detection of various respiratory pathologies. The frequency spread and the component magnitudes are revealed from the analysis of eighty-five bronchial (BS) and pleural rub (PS) lung sounds employing the power spectral density (PSD) plot and wavelet scalogram. The low-frequency spread, and persistence of the high-intensity frequency components are visible in BS sounds emanating from the uniform cross-sectional area of the trachea.

View Article and Find Full Text PDF

This article proposes a unique approach to bring out the potential of graph-based features to reveal the hidden signatures of wet (WE) and dry (DE) cough signals, which are the suggestive symptoms of various respiratory ailments like COVID 19. The spectral and complex network analyses of 115 cough signals are employed for perceiving the airflow dynamics through the infected respiratory tract while coughing. The different phases of WE and DE are observed from their time-domain signals, indicating the operation of the glottis.

View Article and Find Full Text PDF

The paper delves into the plausibility of applying fractal, spectral, and nonlinear time series analyses for lung auscultation. The thirty-five sound signals of bronchial (BB) and pulmonary crackle (PC) analysed by fast Fourier transform and wavelet not only give the details of number, nature, and time of occurrence of the frequency components but also throw light onto the embedded air flow during breathing. Fractal dimension, phase portrait, and sample entropy help in divulging the greater randomness, antipersistent nature, and complexity of airflow dynamics in BB than PC.

View Article and Find Full Text PDF

This paper proposes a novel surrogate method of classification of breath sound signals for auscultation through the principal component analysis (PCA), extracting the features of a phase portrait. The nonlinear parameters of the phase portrait like the Lyapunov exponent, the sample entropy, the fractal dimension, and the Hurst exponent help in understanding the degree of complexity arising due to the turbulence of air molecules in the airways of the lungs. Thirty-nine breath sound signals of bronchial breath (BB) and pleural rub (PR) are studied through spectral, fractal, and phase portrait analyses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp1c0n135fav13i9ah83nb74bb90boa49): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once