Publications by authors named "A P Micolich"

Electronically conductive protein-based materials can enable the creation of bioelectronic components and devices from sustainable and nontoxic materials, while also being well-suited to interface with biological systems, such as living cells, for biosensor applications. However, as proteins are generally electrical insulators, the ability to render protein assemblies electroactive in a tailorable manner can usher in a plethora of useful materials. Here, an approach to fabricate electronically conductive protein nanowires is presented by aligning heme molecules in proximity along protein filaments, with these nanowires also possessing charge transfer abilities that enable energy harvesting from ambient humidity.

View Article and Find Full Text PDF

Reported herein is a neutron reflectometry (NR) study on hydrated Nafion thin films (∼30 nm) on a silicon substrate with native oxide. The Nafion morphology is investigated systematically across the whole relative humidity range using both HO and DO vapours to enable a comparative study. By utilising this systematic approach two key results have been obtained.

View Article and Find Full Text PDF

The two-dimensional (2-D) framework, [Cu(BTDAT)(MeOH)] {BTDAT = bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane}, possesses remarkable multi-step redox properties, with electrochemical studies revealing six quasi-stable redox states in the solid state. In situ electron paramagnetic resonance and visible-near infrared spectroelectrochemistry elucidated the mechanism for these multi-step redox processes, as well as the optical and electrochromic behavior of the BTDAT ligand and framework. In studying the structural, spectroscopic, and electronic properties of [Cu(BTDAT)(MeOH)], the as-synthesized framework was found to exist in a mixed-valence state with thermally-activated semiconducting behavior.

View Article and Find Full Text PDF

A central endeavour in bioelectronics is the development of logic elements to transduce and process ionic to electronic signals. Motivated by this challenge, we report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electron-beam patterned Nafion. We demonstrate inverter circuits with state-of-the-art ion-to-electron transduction performance giving DC gain exceeding 5 and frequency response up to 2 kHz.

View Article and Find Full Text PDF

We report on the postgrowth shaping of free-standing two-dimensional (2D) InAs nanofins that are grown by selective-area epitaxy and mechanically transferred to a separate substrate for device fabrication. We use a citric acid-based wet etch that enables complex shapes, for example, van der Pauw cloverleaf structures, with patterning resolution down to 150 nm as well as partial thinning of the nanofin to improve local gate response. We exploit the high sensitivity of the cloverleaf structures to transport anisotropy to address the fundamental question of whether there is a measurable transport anisotropy arising from wurtzite/zincblende polytypism in 2D InAs nanostructures.

View Article and Find Full Text PDF