Publications by authors named "A P Iatsyshyna"

The endogenous opioid system (EOS) controls the processing of nociceptive stimuli and is a pharmacological target for opioids. Alterations in expression of the EOS genes under neuropathic pain condition may account for low efficacy of opioid drugs. We here examined whether EOS expression patterns are altered in the lumbar spinal cord of the rats with spinal nerve ligation (SNL) as a neuropathic pain model.

View Article and Find Full Text PDF

Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas.

View Article and Find Full Text PDF

Long-term cultivation of human cells, including stem cells, can lead to substantial transformation of the karyotype and occurrence of genetic instability. The aim of this research was a comparative cytogenetic study of the karyotype of a new human stem cell line 4BL at 160 and 205 passages. The absence of 10 and 13 pairs of chromosomes and the monosomy of chromosomes 4, 8, 10, 11, 13, 15, 17, 21, X were observed; also six regular marker chromosomes were detected.

View Article and Find Full Text PDF

Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the μ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing.

View Article and Find Full Text PDF

Using in silico analysis a number of potential sites for post-translational modifications has been revealed within the human O6-methylguanine-DNA methyltransferase (MGMT) protein. In particular these were the acetylation of Gly3 residue in the N-terminus of protein and internal residues Lys132 and Lys135; Arg166 residue methylation; Lys63 SUMOylation and ubiquitination of Lys31, Lys39, Lys49, Lys63, Lys67, Lys135, Lys156, Lys196, Lys209. Also it has been predicted 16 novel potential phosphorylation sites of serine residues (positions 13, 124, 144, 182, 183, 190, 215, 216 and 230), tyrosine residues (positions 100 and 189) and threonine residues (positions 23, 69, 94, 126 and 229), as well as five binding sites for kinases and other proteins (Serl3 with 14-3-3, Val21 and Ile172 with D-domain, Pro78 and Pro111 with SH3-domain, Pro111 with MAPK3).

View Article and Find Full Text PDF