Lactate metabolism plays a critical role in mammalian cell bioprocessing, influencing cellular performance and productivity. The transition from lactate production to consumption, known as lactate metabolic shift, is highly beneficial and has been shown to extend culture lifespan and enhance productivity, yet its molecular drivers remain poorly understood. Here, we have explored the mechanisms that underpin this metabolic shift through two case studies, illustrating environmental- and genetic-driven factors.
View Article and Find Full Text PDFPathogenic variants in the receptor tyrosine kinase TIE2, encoded by TEK, are known to cause vascular malformations (VMs). In this study, we retrospectively reviewed the deidentified data generated through clinical NGS testing in our laboratory and found 88 VM cases with a total of 107 clinically significant TEK variants. Among those, 23 unique variants at the amino acid level were identified, including five novel (p.
View Article and Find Full Text PDFThere are a number of new format antibody-inspired molecules with multiple antigen binding capabilities in development and clinical evaluation. Here, we describe the impact of the sequence and configuration of a unique bispecific antibody format (termed BYbe) using a panel of four BYbe's and the three IgG1s from which they were derived on their production in a Chinese hamster ovary (CHO) cell expression system. Following transfection and selection, one bispecific antibody format yielded fewer mini-pools in comparison to the other bispecific cell pools.
View Article and Find Full Text PDFObjectives: As we age our cognitive abilities can change. However, the degree of change experienced is influenced by a range of factors. To understand what the public know about risk and protective factors for cognitive ageing, a systematic review was conducted of studies considering what people know about brain health.
View Article and Find Full Text PDF