Publications by authors named "A P Demchenko"

Introduction: Pathogenic variants in the gene are linked to a spectrum of syndromes that exhibit partial clinical overlap. Hemizygous loss-of-function variants are considered lethal in males, while heterozygous loss-of-function variants generally result in oro-facial-digital syndrome type 1. A reported phenotype, Simpson-Golabi-Behmel syndrome type 2, was published once but remains controversial, with many specialists questioning its validity and arguing about its continued listing in the OMIM database.

View Article and Find Full Text PDF

With the expanding use of phosphates as leaving groups in sialylations, little remains known about the C-5 effect towards their reactivity and stereoselectivity in the presence of a range of acceptors, and in different solvents. Herein we report the comparison between sialyl phosphate donors bearing N-acetyloxazolidinone and trifluoroacetamido functionalities at C-5. Excellent results and complete stereoselectivity were observed in several sialylations, but the outcome was influenced by the nature of the solvent and/or glycosyl acceptor.

View Article and Find Full Text PDF

Reported herein is a new reaction for glycosylation with thioglycosides in the presence of iron(III) chloride. Previously, FeCl was used for the activation of thioglycosides as a Lewis acid co-promoter paired with NIS. In the reported process, although 5.

View Article and Find Full Text PDF

Reported herein is the synthesis of benzyl β-d-glucopyranoside and its derivatives that provide straightforward access to 3,4-branched glycans. Modes to diversify the synthetic intermediates via introduction of various temporary protecting groups have been demonstrated.

View Article and Find Full Text PDF

Described herein is a continuation of our studies dedicated to the development of novel classes of leaving groups based on - and -imidates. The main focus of the study presented herein is the synthesis of novel 3,3-difluoro-3-indol-2-ylthio (SFox) imidates and their application as glycosyl donors in chemical glycosylation. Being thioimidates, these compounds are more stable than -imidates albeit much more reactive than conventional alkyl/arylthio glycosides.

View Article and Find Full Text PDF