Publications by authors named "A P Arkin"

Spirulina is the common name for the edible, nonheterocystous, filamentous cyanobacterium Arthrospira platensis that is grown industrially as a food supplement, animal feedstock, and pigment source. Although there are many applications for engineering this organism, until recently no genetic tools or reproducible transformation methods have been published. While recent work showed the production of a diversity of proteins in A.

View Article and Find Full Text PDF

Our ability to predict, control, or design biological function is fundamentally limited by poorly annotated gene function. This can be particularly challenging in non-model systems. Accordingly, there is motivation for new high-throughput methods for accurate functional annotation.

View Article and Find Full Text PDF

As nuclear technology evolves in response to increased demand for diversification and decarbonization of the energy sector, new and innovative approaches are needed to effectively identify and deter the proliferation of nuclear arms, while ensuring safe development of global nuclear energy resources. Preventing the use of nuclear material and technology for unsanctioned development of nuclear weapons has been a long-standing challenge for the International Atomic Energy Agency and signatories of the Treaty on the Non-Proliferation of Nuclear Weapons. Environmental swipe sampling has proven to be an effective technique for characterizing clandestine proliferation activities within and around known locations of nuclear facilities and sites.

View Article and Find Full Text PDF

Food production and pharmaceutical synthesis are posited as essential biotechnologies for facilitating human exploration beyond Earth. These technologies not only offer critical green space and food agency to astronauts but also promise to minimize mass and volume requirements through scalable, modular agriculture within closed-loop systems, offering an advantage over traditional bring-along strategies. Despite these benefits, the prevalent model for evaluating such systems exhibits significant limitations.

View Article and Find Full Text PDF

Many factors contribute to the ability of a microbial species to persist when encountering complexly contaminated environments, including time of exposure, the nature and concentration of contaminants, availability of nutritional resources, and possession of a combination of appropriate molecular mechanisms needed for survival. Herein we sought to identify genes that are most important for survival of Gram-negative Enterobacteriaceae in contaminated groundwater environments containing high concentrations of nitrate and metals using the metal-tolerant Oak Ridge Reservation isolate, Pantoea sp. MT58 (MT58).

View Article and Find Full Text PDF