Publications by authors named "A Ouammou"

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, has spread quickly around the world, causing a global pandemic. It has infected more than 500 million people as of April 28, 2022. Much research has been reported to stop the virus from spreading, but there are currently no approved medicines to treat COVID-19.

View Article and Find Full Text PDF

Monoamine oxidase-B (MAO-B) is a flavin-dependent enzyme involved in various neurodegenerative disorders. Here, a dataset of 142 chalcone derivatives, collected from various natural plants, was screened by combining structure-based virtual screening and ADMET approaches. The goal is to discover novel natural chalcones as potential MAO-B inhibitors.

View Article and Find Full Text PDF

Unsaturated ketone derivatives are known as inhibitors of monoamine oxidase B (MAO-B), a potential drug target of Parkinson's disease. Here, docking-based alignment, 3 D-QSAR (three-dimensional quantitative structure-activity relationship) studies, ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction, molecular dynamics (MD) simulation, and MM_GBSA binding free energy were performed on a novel series of MAO-B inhibitors. The objective is to predict new MAO-B inhibitors with high potency activity.

View Article and Find Full Text PDF

Protein case in kinase II alpha subunit (CK2) plays an imperative function in treating cancer disease. Herein, we have performed a three-dimensional quantitative structure activity relationship (3D-QSAR), and molecular docking analysis on a novel series of 2, 4, 5-trisubstituted imidazole derivatives in order to design potent kinase II alpha subunit (CK2) inhibitors. The 3D-QSAR methods such as comparative molecular similarity indexes analysis (COMSIA), and the comparative molecular field analysis (COMFA) were investigate using twenty-four molecules of 2, 4, 5-trisubstituted imidazole derivatives as anticancer agent.

View Article and Find Full Text PDF

Unsaturated ketone derivatives are known as monoamine oxidase B (MAO-B) inhibitors, a potential drug target for Parkinson's disease. Here, molecular modeling studies, including 2D-QSAR, ADMET prediction, molecular docking, and MD simulation, were performed on a new series of MAO-B inhibitors. The objective is to identify new MAO-B inhibitors with high inhibitory efficacy.

View Article and Find Full Text PDF