Publications by authors named "A Ostfeld"

Water distribution systems (WDSs) are designed to convey water from sources to consumers. Their operation is a main concern for engineers, researchers, and practitioners and is subject to demand, pressure, and quality constraints. Pumping stations require power to pump water and keep system pressure at a desired level.

View Article and Find Full Text PDF

Prevention behaviors are important in mitigating the transmission of COVID-19. The protection motivation theory (PMT) links perceptions of risk and coping ability with the act of adopting prevention behaviors. The goal of this research is to test the application of the PMT in predicting adoption of prevention behaviors during the COVID-19 pandemic.

View Article and Find Full Text PDF

Optimal pressure management is a standard strategy for water loss minimization in water distribution systems (WDS). A pragmatic solution to regulating water pressures and leakage is introducing pressure-reducing valves (PRVs). This paper presents a valve positioning algorithm for optimally deciding the positions and setpoints of PRVs in a WDS.

View Article and Find Full Text PDF

Past water distribution systems (WDS) management studies derived operation protocols to maximize WDS reliability by using residual chlorine as the sole surrogate parameter for water quality reliability. Albeit the advancement in mechanistic modeling to examine the WDS water quality, emerging water quality parameters of concern are not yet involved in solving WDS management problems. This paper attempts to overcome this limitation by developing a flexible decision-making framework -integrating EPANET-C, a mechanistic modeling tool for WDS water quality, with Analytic Hierarchy Process (AHP), a multi-criteria decision-making method - to rank the possible water quality parameter-based operating alternatives (organic matter and residual chlorine levels at the source points) for WDS.

View Article and Find Full Text PDF

The complexity of modeling water quality variations in water distribution systems (WDS), studied for decades, stems from multiple constraints and variables involved and the complexity of the system behavior. The conventional macroscale-based WDS water quality models are founded on continuum mechanics. In attempts to provide a broad picture of the multi-species interactions, these models overlook the stochasticity corresponding to the reaction mechanisms within the WDS domain.

View Article and Find Full Text PDF