Gene fusions are common primary drivers of pediatric leukemias and are the result of underlying structural variant (SVs). Current clinical workflows to detect such alterations rely on a multimodal approach, which often increases analysis time and overall cost of testing. In this study, we used long-read sequencing (lrSeq) as a proof-of-concept to determine whether clinically relevant (cr) SVs could be detected within a small (n = 17) pediatric leukemia cohort.
View Article and Find Full Text PDFAcute Myeloid Leukemia (AML) is an aggressive cancer with dismal outcomes, vast subtype heterogeneity, and suboptimal risk stratification. In this study, we harmonized DNA methylation data from 3,314 patients across 11 cohorts to develop the Acute Leukemia Methylome Atlas (ALMA) of diagnostic relevance that predicted 27 WHO 2022 acute leukemia subtypes with an overall accuracy of 96.3% in discovery and 90.
View Article and Find Full Text PDFIn this study, we leveraged machine-learning tools by evaluating expression of genes of pharmacological relevance to standard-AML chemotherapy (ara-C/daunorubicin/etoposide) in a discovery-cohort of pediatric AML patients (N = 163; NCT00136084 ) and defined a 5-gene-drug resistance score (ADE-RS5) that was predictive of outcome (high MRD1 positivity p = 0.013; lower EFS p < 0.0001 and OS p < 0.
View Article and Find Full Text PDFThe addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array.
View Article and Find Full Text PDF