Publications by authors named "A Orren"

Complement C5 deficiency (C5D) is a rare primary immunodeficiency associated with recurrent infections, particularly meningitis, by Neisseria species. To date, studies to elucidate the molecular basis of hereditary C5D have included fewer than 40 families, and most C5 mutations (13 of 17) have been found in single families. However, the recently described C5 p.

View Article and Find Full Text PDF

Patients with genetically determined deficiency of complement component 5 are usually diagnosed because of recurrent invasive Neisseria meningitidis infections. Approximately 40 individual cases have been diagnosed worldwide. Nevertheless, reports of the responsible genetic defects have been sporadic, and we know of no previous reports of C5 deficiency being associated with a number of independent meningococcal disease cases in particular communities.

View Article and Find Full Text PDF

Background: Invasive meningococcal disease (MD), caused by Neisseria meningitidis infection, is endemic in South Africa, with a seasonal peak in winter and spring. There were 2 432 laboratory-confirmed cases between 2006 and 2010. Human deficiency of the fifth complement component (C5D) or complete absence of the sixth component (C6Q0) leads to increased risk of MD, which is often recurrent.

View Article and Find Full Text PDF

Complete complement component 6 deficiency (C6Q0) is a co-dominant genetic disease presenting as increased susceptibility to invasive Neisseria meningitidis infections. Affected individuals have two affected alleles which can be homozygous or compound heterozygous for the particular gene defects they carry. This disorder has been diagnosed relatively frequently in Western Cape South Africans.

View Article and Find Full Text PDF

Inherited deficiency of the seventh complement component (C7) is associated with increased susceptibility to Neisseria meningitidis infections. The disease is rare in most Western countries. Here we report new investigations of a large, but incompletely characterized genomic deletion of exons 8 and 9 [c.

View Article and Find Full Text PDF