Publications by authors named "A Orban"

New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target.

View Article and Find Full Text PDF

Plasmodium vivax is the most widespread of the different Plasmodium species able to infect humans and is responsible for most malaria cases outside Africa. An effective, strain-transcending vaccine that alleviates or suppresses erythrocyte invasion would be a game-changer in eliminating vivax malaria. Recently, the binding of P.

View Article and Find Full Text PDF

Hemozoin is a natural biomarker formed during the hemoglobin metabolism of Plasmodium parasites, the causative agents of malaria. The rotating-crystal magneto-optical detection (RMOD) has been developed for its rapid and sensitive detection both in cell cultures and patient samples. In the current article we demonstrate that, besides quantifying the overall concentration of hemozoin produced by the parasites, RMOD can also track the size distribution of the hemozoin crystals.

View Article and Find Full Text PDF

Recent studies indicate that human spleen contains over 95% of the total parasite biomass during chronic asymptomatic infections caused by . Previous studies have demonstrated that extracellular vesicles (EVs) secreted from infected reticulocytes facilitate binding to human spleen fibroblasts (hSFs) and identified parasite genes whose expression was dependent on an intact spleen. Here, we characterize the spleen-dependent hypothetical gene (PVX_114580).

View Article and Find Full Text PDF

The BELSAR dataset consists of high-resolution multitemporal airborne mono- and bistatic fully-polarimetric synthetic aperture radar (SAR) data in L-band, alongside concurrent measurements of vegetation and soil biogeophysical variables measured in maize and winter wheat fields during the summer of 2018 in Belgium. Its collection was funded by the European Space Agency (ESA) to address the lack of publicly-accessible experimental datasets combining multistatic SAR and in situ measurements. As such, it offers an opportunity to advance the development of SAR remote sensing science and applications for agricultural monitoring and hydrology.

View Article and Find Full Text PDF