Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter , encased in a glass coating, with a total diameter . In this study, we investigated how the dimensions of both components and their ratio (/) influence the magnetization reversal behavior of Fe-based microwires.
View Article and Find Full Text PDFThis study investigates the effects of Zn substitution on the magnetic properties of ∼5 nm cobalt ferrite nanoparticles (ZnxCo1-xFe2O4, where x = 0, 0.13, 0.34, and 0.
View Article and Find Full Text PDFA set of ∼9 nm CoFeO nanoparticles substituted with Zn and Ni was prepared by thermal decomposition of metallic acetylacetonate precursors to correlate the effects of replacement of Co with the resulting magnetic properties. Due to the distinct selectivity of these cations for the spinel ferrite crystal sites, we show that it is possible to tailor the magnetic anisotropy, saturation magnetization, and interparticle interactions of the nanoparticles during the synthesis stage. This approach unlocks new possibilities for enhancing the performance of spinel ferrite nanoparticles in specific applications.
View Article and Find Full Text PDFTiCT MXene is one of the most comprehensively studied 2D materials in terms of its adsorptive, transport, and catalytic properties, cytotoxic performance, etc. Still, conventional MXene synthesis approaches provide low single-flake MXene yield and frequently uncontrollable properties, demanding further post-processing. The MXene family also lacks magnetism, which is helpful for producing effective nanoadsorbents as their magnetic decantation is the cheapest and most convenient way to remove the spent adsorbent from water.
View Article and Find Full Text PDFPolymer-based multiferroics, combining magnetic and piezoelectric properties, are studied experimentally-from synthesis to multi-parameter characterization-in view of their prospects for fabricating biocompatible scaffolds. The main advantage of these systems is facile generation of mechanical deformations and electric signals in response to external magnetic fields. Herein, we address the composites based on PVDF-TrFE polymer matrices filled with a combination of piezoelectric (BaTiO BTO) and/or ferrimagnetic (ZnCoFeO, ZCFO) particles.
View Article and Find Full Text PDF